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A CONFORMING FINITE ELEMENT FOR PLATE BENDING*

B. FRAEDS DE VEUBEKE

Laboratory of Aerospace Engineering, University of Liége, Belgium

Abstract—A new, more compact, scheme is presented for building the (16 x 16) stiffness matrix of a finite plate
element in bending. The element is of a conforming type: it satisfies continuity of deflections and slopes at the
interfaces. In addition to the promise of good convergence characteristics, this property also guarantees lower
bounds to influence coefficients. The arbitrary quadrilateral shape is also convenient for versatility in the applica-
tions.

1. INTRODUCTION

THE difficulties involved in obtaining conforming displacement models for plate bending
have been stressed in the literature [1-3].

Continuity of deflections at the interfaces is the prime requirement to satisfy. The next
requirement is the continuity of slopes which, if achieved, would produce a continuous,
piecewise differential field of displacements in the structure. Most models, however,
cannot comply rigorously with slope continuity. Although it appears from experience
that local violations in slope continuity do not necessarily prevent convergence of deflec-
tions to the correct values when mesh sizes are reduced, the convergence of the stress field
is much more seriously affected. Another reason for striving to a rigorous enforcement of
slope continuity is the guarantee it provides that the direct influence coefficients obtained
are actually lower bounds to the true ones. This, coupled with an analysis of the same
problem using equilibrium models, opens the possibility to compare those lower bounds
with upper bounds and so ascertain the value of the approximations [4, 5].

A conforming element of quadrilateral shape can be obtained from a combination of
cubic deflection fields in the four triangular regions delimited by the edges of the quadri-
lateral and its diagonals. The principle of this construction and the advantage of using the
diagonals as a natural oblique co-ordinate system for assembling the fields were the subject
of earlier publications [6, 7]. Further simplifications, reducing computer time, were dis-
covered while setting up a program for the stiffness matrix of the element ; they are reported
here.

2. STRAIN ENERGY OF A TRIANGULAR FIELD

Consider the complete cubic deflection field
W = 0y +0pX + 03y + 2y x4 205Xy + o6y + Moy x>+ agx?y+agxy’ +aoy®) (1)

valid in the triangular region 1 of Fig. 1.

* This research has been sponsored by the Air Force Flight Dynamics Laboratory under Contract
AF 61(052)-892 through the European Office of Aerospace Research (EOAR), United States Air Force.
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Fic. 1

The ten coefficients can be determined in terms of the local deflections (wg, wy, w5)
at the nodes 1,2,0, the local slopes (¢, ¢, @,), where ¢ = éw/0x, the local slopes
(Yo, ¥ 1, ¥,), where iy = Ow/dy, and the local slope ¢, , at mid distance along the edge 12.

%y = Wy Ay = o a3 =¥, 2)

a*oy = —3wo—2ady+ 3w, —ag,
2abas = —6wy—2ad,—2bYo+ 6w, —ag, +2by +ad,—4ad,,

B = — 3wo—2bio+3wa— b,
4aa, = 2wy +ado—2w, +ad,
da’bag = 6wy +2ado+ by — 6w, +ad, —by; —ad,+4ad,,
dab’ay = 6wy +ady+2byr, — 6w, +agp, —2by, +4ad,,
4ba, o = 2wo+byg—2w, + by, (3)

The bending strain energy in the oblique co-ordinates (x, y) is

_ 2
U, 1 “ D[(W""+ Wyy—2W,, COS & 21— V) gty Wiy)] dxdy
1

~ 2sina sin a
where D is the bending rigidity of the plate. To calculate it in terms of the generalized co-

ordinates

(WodoWow @131 wado¥2012) = 4

(g is the transpose of the column matrix g, of the generalized co-ordinates), we express
the curvature as

1 2x 2y
V= ) = Ve W et @
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where the (3 x 10) matrices of constants W, W, and W, can be written down from
Wyx = 2004+ 24x00, + 8yotg
Wy, = 205+ 8xog + 8yag
w,, = 2006 + 8x0tg + 24 yat; o

and substitution of the a; from equations (2) and (3). Then

1
U, =§jj Dy'Hydx dy (5)
1
with
1 ' —2cos o cosZa+v sina
1
=—— —2cosa 4 cos?a +2(1 — v) sin’a —2cosa X (6)
sin’a
cos?a+ v sin’a —2cosa 1

If the bending rigidity remains constant over the area of the triangle, equation (5) can be
evaluated in terms of

2 2

H pdxdy=2p “ Dxdxdy = 22p ” Dydxdy = 22D
1 2 1 6 1 6

(7
a’b a*b? ab?
Dx*dxdy = —D “‘D dxdy = —D ijzdd=—D.
lexy 12 [Ty = Y=
Then, having substituted equation (4) into (5)
U, = 341K 4, (8)
and the stiffness matrix of the first triangle can be calculated from

6ab3

K, = 3WHW+2W.HW+W HW,+WHW+ W HW,+ W,HW,+ W,HW,)

+ W,HW,+ WHW,.

Closer inspection of this formula reveals that, introducing the combinations

A, =W+ W, B, = W+ W, Cy=W+W+W, 9)
the number of products can be reduced to three:
6a’b? , , )
Kl = AIHA1+BIHB1+C1HC1. (10)

Furthermore the matrices A,, B, and C, are simpler.
0 —ab? 0 0 ab? 0 0 0 0 0
A =10 0 —ab? 0 0 ab? 0 0 0
0 a® —2a%h —6a* a* -2a’bh 6a* 0 -2a%b 4a°
(11)
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0 —2ab? b? 0 —ab* -b* 0 —ab? 0 4ab*
B,=1]0 —a?b 0 0 0 0 0 ab 0 0
0 0 —ab 0 0 0 0 0 a’b 0
(12)
6b>  ab? b3 —6b? 2ab* —-b* 0 —ab? 0 4ab®
C,= |6ab a’b ab> —6ab a*h —ab* O 0 0 4a’b
6a> a’ a’b  —6a* a*> -2a*b O 0 a’h  4a’
(13)

3. ASSEMBLING THE STIFFNESS MATRICES OF THE TRIANGULAR FIELDS

In the second triangular field we can obtain continuity along the interface x = 0 of
the deflection w (hence also continuity of éw/dy) and of the slope dw/0x by retaining the
values of the coefficients «,, a,, a3, a5, &g, &g and a,, of the first field.

New values «}, o5 and ag can be adopted for the remaining coefficients. It can be
verified that, as would be expected, the coefficients of the second field are given by the same
formulas (2) and (3), provided we change a into —c¢, w, into w;, ¢, into ¢;, ¥, into ¥,
¢, into ¢, ;. The generalized co-ordinates for the second field are thus

(WodolW oW3 33w, 2023) = g5
Proceeding in the same manner as for the first field, the strain energy
U, = 39:K24,
produces a stiffness matrix K, given by

6¢c3b3

K, = AyHA,+ ByHB, + C,HC,

where 4,, B, and C, are directly obtainable from the corresponding matrices (11), (12)
and (13) of the first field by changing a into —c.

For field 3, defiections and slopes at the interface y = 0 are identicai with those of
field 1 if the coefficients a,, a,, a3, oy, @5, &, and ag are retained.

The new coefficients are oy, o5 and o). To determine the coefficients in terms of the
generalized displacements

(WoP oW oW1 1Y 1 WaPaadar) = g5

we can use formulas (2) and (3) with the modifications b into —d, w, into w,, ¢, into ¢,
¥, into Y, and ¢,, into ¢, . The stiffness matrix K, is given by
6a*d?
D

K3 = A4HA,+B3yHB3+CLHC,

where 4,, B3, C; derive from A,, B, C, by changing b into —d. Finally the fourth field
conforms with fields 2 and 3 at the interfaces, if its coefficients are

Oy, 0y O3, Oy, Os, D, 05, Ag, Oy and o,
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In terms of the generalized co-ordinates

(Wod oW oWad3¥sWada¥sdas) = qs

the coefficients derive from equations (2) and (3) with the combined modifications: a into
—c¢, binto —d

wy, ¢y, Wy respectively into  wy, ¢j, Y5

w,, @5, ¥, respectively into  w,, ¢, Y,

¢y into @,

Again, with the double change : ainto —c and b into —d, the matrices (11)}13) can be used
to form
6c3d’
D

The four partial stiffness matrices are combined into a (19 x 19) matrix J defined by energy
addition

4
;qéK.qi =p'Jp (14)

where

P = WodoWoW101¥1W20:Y W3 3Y 3waPat 4P 12023034041).

This can be done by using localizing matrices L;
q;=Lp (15)
4
J =YY LKL, (16)
1

or simply addressing directly the elements to their proper place in J as they are generated.

4. CONDENSATION

J isnot a proper stiffness matrix since the nineteen co-ordinates in p are not independent.
They depend on sixteen coefficients

o (i=123...10) and a;(i=4.6,7,8.9,10).

It is interesting to observe that o, a,, a3 which represent the rigid body freedoms of the
plate and a5, which represents a torsional deformation mode, are the only coefficients
valid throughout the four fields. Equating the four different field expressions obtained
from equation (3) for coefficient a5, we obtain a system of three equations that can easily
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be solved for the deflection and slope at the internal node:
¢ a ac ac

Wo=——W +——W3——@P; +——
T a+e N a+e 6(a+c)¢1 6(a+c)('b3

2ac

+m(—d¢nz+d¢23+b¢34_b¢4l)

b0 = S G e s d)¢2+2(bt—)i— ot
o 012 s b+ aboa

L .. N S S SO g

T atc a+c (a+c)(b+d)

It can be verified that, with these values of wq, ¢, and ¥, the other equations between
different expressions of the «; and a) coefficients turn into identities, Hence the sixteen
coeflicients can be expressed in terms of the sixteen generalized co-ordinates

(Wi w020 w3l 3wad st ,023034041) = ¢

by a non-singular transformation.
If the linear relations (17) are put in matrix form

Wo
$o | = Mq (18)
Yo
a condensation matrix N is defined by
M
v={4] (19
where E is a (16 x 16) identity matrix, so that
p = Ng. (20)
The total energy becomes
29'Kq (21)
with the (proper) stiffness matrix
K = N'JN. (22)

5. NORMALIZATION TO COMMON REFERENCE DIRECTIONS

K is now the stiffness matrix of a conforming element.

Indeed, consider the edge 12 and suppose the quantities (wy, ¢, ¥) (w1, ¢,, ¥,) and
¢, , to be known. From ¢, and y; we can deduce the slopes s, and n, respectively in the
direction 12 and normal to it in 1. Similarly from ¢, and , we can deduce s, and n,. The



A conforming finite element for plate bending 101

knowledge of (w, w,, s, s,) is just sufficient to determine w everywhere, since it varies
as a cubic along the edge. In particular the slope s, , at mid distance is thereby determined.
From s, and ¢,,, n;, can now be determined and the knowledge of n,, n, and n,, is just
sufficient to determine the transverse slope n everywhere, since it has parabolic variation.
Consequently, the knowledge of (w,, ¢, ¥,), (w,, ¢,, ¥,) and ¢,, determines completely
the deflections and slopes along the edge 12. Should this edge become an interface, con-
tinuity of deflections and slopes will follow from the single-valuedness of deflections and
slopes in the nodes 1 and 2 and single-valuedness of the transverse slope at mid distance.

As the natural reference directions, provided by the diagonals, can change when
passing from one element to the other, it is advisable to refer the slopes to common reference
directions. This facilitates pairwise identification of the co-ordinates that will in fact
become the nodal displacements of the assembled structure.

For the identification of slopes at mid distance of an edge the best policy is to use as
generalized co-ordinates the slopes in the directions of the outward normal (Fig. 2).

FiG. 2

Then, when assembling elements, account must be taken of the reversal of sign of the
reference direction. Taking the case of the edge 12, the problem consists in expressing
¢, in terms of the slope n,, in the direction of the outward normal and (w,, ¢, V),

(W2, @2, ¥3).

One procedure is as follows. From ¢, and ¢, deduce the slope s, in the direction 12

€128y = —ap, +by,
(a® +b* —2ab cos «)? the length of the edge.

I

C12

Similarly in 2

C128; = —ag,+by,.
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Then, considering the cubic variation of w along 12, express the slope s,, at mid distance

4c(y81, = 6wy — 6wy —cy5(s1+52)
or, substituting s, and s,,

4cy281, = 6W,— 6w, +ad, —by, +ad, —by,.
Finally express ¢, in terms of 5,, and n,,
C12¢12 = b Sin anlz —(a_b CcOs fx)slz.
When s, , is substituted the required formula is

bsin a a—bcosa
$ip = Nyy— 4, (6w, — 6w, +ad, —by, +ad,—by,). (23)

C12

At the vertices, where several elements are interconnected, the slopes should be referred
to a common cartesian reference frame (Fig. 2). The cartesian slopes dw/0X and dw/dY
will be denoted by ¢ and # respectively. They are related to the slopes ¢ and y in the refer-
ence frame of the diagonals by

oX dY oxX oY
=¢é—+n— =¢—+n—. 24
p=Lo tn— ¥ £6y+n6y (24)
There is a choice for expressing the direction cosines, which can sometimes produce
analytical simplifications :
6X_x10=~>ﬁ)3= X3

6_x_ a C a+c
OY _Yio_ Yos _ Y
O0x a c a+c
(25)
0X _Xa0 _ Xoa _ %24
dy b d b+d
OY _ Yao_ Yoa_ Yaa
dy b d b+d

In these formulas x;; stands for x;—x; and y;; for y;—y;, where (x;, y;) are the co-ordinates
of the intersection of the diagonals (i = 0) and of the vertices (i = 1, 2, 3, 4) in the cartesian
reference frame. The computer can generate the required geometrical characteristics from
the co-ordinates of the vertices alone by formulas such as

_ X1X2Y34+ X5X3Y41 + X3XaY 12+ XaX1Y23
Y31X24—X31Y24

_ Y1Y2X34+tV2YaXar +VaVaX12+ Yay1Xa3
X31Y24 — V31X24

Xo

(26)

Yo
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a’ = x{o+yio
(a+c)® = xi3+yi;
et =xi,+yh,
absin o = x10y,0—Y10%20
abcosa = x,10X20+ V10V20 (27)

al@a—bcosa) = x19X1,+y10V12
Our final (conforming) set of generalized co-ordinates is described by the row vector

r' = (Wi & wan owansEawanaan n, snang).
The transformation

q = Pr (28)

from the old (natural) set of co-ordinates to the conforming one is made up from eight
equations of type (24) applied to the slopes at the vertices, four identities w; = w; at the
vertices, and four equations of type (23) in which, however, the natural slopes at the vertices
are still to be replaced by the cartesian ones. The result for ¢,, turns out to be

b1, = X10¥Y20— Y10X20 n
12 = 12
VIxto+yio)(xis +¥12)]

X10X12+Y10V12
~ 6w, — 6w, + + + + .
4(x%2+y%2)\/(x§0+yfo)( Wy — 6wy +x1,8; +x1285+ Y12ty +Y1212)
In this form, the other ¢,; values can be obtained by a cyclic permutation of the indices
(1,2, 3,4).
Under the linear transformation (28) the energy of the element becomes the quadratic
form

(29)

irRr

in the conforming co-ordinates. The final (operational) stiffness matrix Ris to be calculated
from

R=PKP or R=QJQ (30)

where Q = NP is the product of the condensing matrix N and the conforming matrix P.
This product can be programmed numerically. If an analytical form is preferred, the only
algebra remaining is the substitution of equations (24) and (29) into equations (17).

6. SHAPING OR WEIGHTING FUNCTIONS

In order to translate externally applied loads into generalized loads, the transverse
displacement of the plate should be expressed in terms of the generalized displacements.
Suppose that in each field (i = 1, 2, 3,4) w is expressed in function of the co-ordinates g;.
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For example, in field 1.

w = woWo 1(x, Y)+ ¢o®@p 1(x, )+ Yo Wo 1{x, ¥)+w W 1(x, y)
+¢. @y 1 (x, )+ W (x, 0+ w, W, (1) +¢,@, (X, Y) (31)
+ W51 (% y)+ 1P 5(x, p).

Then, the virtual work equation for a transverse load n(x, y) on that part of the element is

sin ac.“A a(x, ywdx dy = q1 f; (32)
1

where the elements of the generalized loads matrix f; are in succession
sin ocj.j n(x, y)Wp.1(x, y) dx dy, sin oz“‘ n(x, Y@y 1(x, y) dx dy, etc.
1 1

The contribution of concentrated loads is simply obtained by multiplication of the load
by the local values of the weighting functions

Wo 1(x. y), etc.

The total virtual work, adding the four field contributions, will be, by virtue of equation (15)

4 4

Yaifi=p Y Lifi="pf. (33)

Hence, the generalized loads conjugate to the generalized displacements in p are obtained
from

4
S =Y L (34)
1

Again, from the invariance of the virtual work, and by virtue of relations (20), (28) and (30)

4
g = N(Z L.f, (virtual work g'q) (35)
1

is the loads matrix conjugate to q (defining a set of ‘“‘natural” generalized displacements),
while

h=Pg=0

4
YL fi) (virtual work h'r) (36)
1

is the loads matrix conjugate to r (defining a set of ““conformiing” generalized displacements).
Hence, since the matrix @ is available, being necessary to generate the operational
stiffness matrix, it is convenient to evaluate the loads by the f; contributions.
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The required weighting functions for field 1 turn out to be:

x y\? X .y
Wo, =l1-2-2f[1+2%+22
01 ( a b ( N b)
2
Xy
@, , = x[1-2-7
01 =X a b)

2
X y

¥, =yl1-=-2
01 =Y a b)

2

2
X[, X y X xy ¥y
=H32iel 2t XY 6L
Wi a3a+6b a? 6ab 6bz
2 2
x y x2 xy y
Pri=X=07p a2+ab+b2)
(37)
x{. x .y
lI’l,l—yaZ p Zb)
2
y y
Wz1—57(3 25)
v, x
=x21-2
D, xb( )

The modifications to introduce in order to convert those functions into the weighting
functions of fields 2, 3 and 4 are exactly the same as those discussed in Section 3.

7. GENERALIZED EXTERNAL LOADS FOR UNIFORM TRANSVERSE LOADING

To evaluate the integrals involved in equation (32), which are extended over a triangular
field, it is convenient to change variables as follows:

Yy
L -1-
5 v

Qix
I
<
|
&

so that equation (32) is transformed into

1 v
¢, f, = absin aj {j n(x, yw du}du (38)
(o]

0o
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and the weighting functions (37) become
Wo.1 = u*(3—2u)
Gy, = au’(v—u)
Yo, = bu*(1—v)
v*(3 —2v)—u*(3—2u)

RS
I

@, = alv—u)(®+v*—uv—v)
¥, ;= bv?—u?)(1-v)

W1 = (1-v)*(1+20)

D, =av—uw(l-v)(1—-v+u)
¥, = —bv(l—v)?

®,, = —dau(v—uw)(1—vo).

(39)

In the case of a uniform transverse load =, in field one, integration produces the following
generalized loads matrix

, _mabsina
fi=""15
Similar results are immediately obtainable for the three other fields by the appropriate

substitutions in the geometrical parameters a and b. The proper combinations generating
the equivalent external loads for the element are then obtained through equation (36).

(18 2a 2b 24 —5a 4b 18 3a —4b —4a).

8. LAGRANGIAN MASS MATRICES

Let m,(x, y) be the distribution of mass over the area of the first field of the plate element.
The kinetic energy, neglecting the rotary inertia, will then be

1 v
sin a% Jf m,(x, yW3(x, y)dx dy = 1absin ozf {j m,(u, v)W(u, v) du}dv.
1

0 [

Substitution of the transverse velocity in terms of the shaping functions

W= oWy i(th 0)+ -+ + ¢y, @5, 1)
gives the quadratic form
341 M4, -

With a Lagrangian mass matrix M, having elements defined by

1 v

ab sin aj {j m,(u, )W ,(u, v) du} dv
0 0

1

(40)

ab sin aJ. {j my(u, )W, 1@y, du} dv etc.
0

0
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Those elements have been evaluated for the case of a constant mass distribution
m,(x, y) = m and the resulting Lagrangian mass matrix M, is given in Table 1. The corres-
ponding matrices for the other fields follow by the appropriate modifications in the geo-
metrical constants.

TABLE |. LAGRANGIAN MASS MATRIX FOR THE g, CO-ORDINATES; UNIFORM MASS DISTRIBUTION m

[ 864
84a 12a?
84b 6ab 122 Symmetrical

396 66a 36b 1224
~9%0a —15a> —8ab —240a 50a°
66b 9ab 8b? 1746 —37ab  32b®
252 18a 48b 396 —90a 96b 864

mab sin o
10-080

42q 5q2 6ab 102a —23a*> 22ab 1084 20a?
—~66b —5ab —12b* —102b 23ab —24b> —168b —24ab 36b*
| —9%6a —12a> —12ab —144a 324> —28ab —96a —20a*> 24ab 3247 J

The Lagrangian mass matrix of the element in conforming co-ordinates follows by
addition of energies and application of the linear transformations (15), (20) and (28) as

M = P’N’( i L;.M,.L,.)NP = Q’( i L;.M,.L,.)Q. (41)

9. FINAL REMARKS

The element is now operational and preliminary results for the case of a rectangular
plate, centrally loaded, under various boundary conditions, are extremely satisfactory
from the deflections point of view. Numerical results and comparison with other reported
data are given in [8].

Finally, in a private communication, Professor T. H. Pian pointed out the similarity
of our technique for assembling polynomial approximations to the methods described in

[9-11].

REFERENCES

[1] O. C. Zienkiewicz and Y. K. CHEUNG, The finite element method for analysis of elastic isotropic and
orthotropic slabs. Proc. Instn civ. Engrs 28, 471488 (1964).

[2] G.P. BAZELEY, Y. K. CHEUNG, B. M. IroNs and O. C. ZIENKIEWICZ, Triangular elements in bending. Con-
forming and non-conforming solutions. Proc. Conf. Matrix Methods in Structural Mechanics, Air Force
Institute of Technology, Dayton, Ohio, Oct. (1965).

[3] R. W. CLoUGH and J. L. ToCHER, Finite element stiffness matrices for analysis of plates in bending. Proc.
Conf. Matrix Methods in Structural Mechanics, Air Force Institute of Technology, Dayton, Ohio, Oct.

(1965).



108 B. FRAEUS DE VEUBEKE

[4] B. FrAEUS DE VEUBEKE, Upper and lower bounds in matrix structural analysis. AGARDograph 78, pp.
165-201. Pergamon Press (1963).

[5] B. FrRAEUS DE VEUBEKE, Displacement and equilibrium models in the finite element method. Stress Analysis,
edited by O. C. Zienkiewicz and G. S. HoLIisTER, Chapter 9. Wiley (1965).

[6] G. SANDER, Bornes supérieures et inférieures dans ["analyse matricielle des plaques en tlexion-torsion.
Bull. Soc. r. Sci. Liége 33, 456-494 (1964).

[7] B.FRrAEUS DE VEUBEKE, Bending and stretching of plates. Proc. Conf. Matrix Methods in Structural Mechanics,
Air Force Institute of Technology, Dayton, Ohio, Oct. (1965).

[8] G. SanDER and B. FrAEUS DE VEUBEKE, Upper and lower bounds to structural deflections by dual analysis
in finite elements. Annual Summary 1. Air Force Technical Report AFFDL-TR-66-199, pp. 3-21 to 3-27
(1966).

[91 G. BirkHOFF and H. L. GARABEDIAN, Smooth surface interpolation. J. Math. Phys. 39, 258-268 (1960).

[10] C. pE Boor, Bicubic spline interpolation. J. Math. Phys. 41, 212-218 (1962).
[11] G. BirkHOFF and C. DE BoOR, Piecewise Polynomial Interpolation and Approximation. Elsevier (1965).

(Received 23 January 1967)

AberpakT—IIpennaraerca nuis pacyeTa coopykeHu#i Hopas, Gonee komnakTHas cxeMa (16 x 16) MaTpHub
x03GPULHMEHTOB XECTKOCTH IJI KOHEYHOro M3rubaeMoro 3neMeHTa IUIACTHHKH. OJIEMEHT SBIIACTCH
COOTBETCTBYIOLIMM THUIIOM TaK, KAK YAOBJIETBOPSET YCAOBHIO HEMPEPHIBHOCTH H3rHOOB M MMEET HAKJIOHBI
Ha nNoBEPXHOCTAX paspena. [JoOaBOYHO, OTHOCHTENBHO NEPCMEKTHBBI HamIekamed CXoAuMOCTH
XapaKTEPHCTHK, TAKOE CBOMCTBO 06ECIIEUMBAET TAKKE HU3LIKE CKAYKH, KOTOPBIE BIIHAIOT HA KO3 HIHEHTHI.
Yroxe XacaeTcsi MHOI'OCTOPDOHHOCTH MeTonaa, oOblYHas YeThipeyrojbHas ¢opMa ABISETCA TakKKe
ynoOHO# B IpUMEHEHUSIX.



